

Ethology as an Inspiration for Adaptive Behavior Synthesis in Autonomous Planetary Rovers

Edward Tunstel

Robotic Vehicles Group

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA USA

NASA/JPL Workshop on Biomorphic Robotics
Caltech, Pasadena, CA
August 14-16, 2000

Outline

- Concepts from ethology
- Manifestations in rover navigation
- Simulation examples
- Behavioral interactions
- Conclusions

Analysis↔Synthesis Premise

- Ethologists analyze animal behavior and develop models & explanations based upon external observations (outside-in)
- Roboticists seek to synthesize (animal-/human-like) intelligent behavior in robots by implementing computational algorithms and electronic circuitry (inside-out)
- Conceptual models from ethology are useful starting points for intelligent behavior synthesis in robots

Concepts from ethology

- Hierarchical organization of behavior instinct levels, innate releasing mechanisms, fixed action patterns, primitive motor activities.
- Concurrent activation and coordination of motivational tendencies (multi-behavior action selection)
- Behavior excitation and inhibition via threshold activation

Examples from ethology

- Incubation behavior of the herring gull (G. P. Baerends. 1970)
- Tinbergen's hierarchy of instinct centers (1951)
- MacLean's triune brain concept (1973)

• . . .

Real world rover navigation

- Negotiation of natural and rough terrain
- Autonomy constrained by limited power, computation, and communications bandwidth
- State-of-the-art processors not widely available for space applications

=> Need for flexible control architectures and efficient algorithms

Hierarchical behavior structure

- Autonomous motion behavior can be conveniently decomposed into a bottom-up hierarchy of increasing capabilities
- Primitive behaviors
 - ~ simple; special-purpose
 - ~ maps from perception to actuators (stimuli to response)
 - ~ solipsist
- Composite behaviors
 - ~ modulate activation of primitives for task execution
 - ~ decision modules that coordinate concurrent primitives
 - ~ motivational, goal-oriented

Multi-rule-base FLC

Aug. 14-16. 2000

Rover navigation behavior hierarchy

Behavior Modulation: coordination

- Decision-making mechanism among fuzzy-behaviors based on dynamically adaptive weights
- Composite behaviors govern
 continuous activation levels of
 applicable primitive behaviors
- Coordination based on Degree
 Of Applicability (DOA), α_j
 applicability rule:
 IF obstacle is Near and goal is Far
 THEN α₁ is High; α₂ is Low

■ DOAs adapt the control mapping from perceptions to actions

Multi-behavior decision making

 Activation levels (weights) govern individual behavioral influence

• Control decision is a consensus among all *applicable* behaviors

Threshold Activation

• Consideration of behavior output thresholds, θ

non-activated

- Activate if stimuli exceed activation threshold
- Behavior *selection* is a special case $[(\alpha_i > 0) \land (\alpha_i > \theta_i)] \land [(\alpha_j = 0) \lor (\alpha_j < \theta_j)], \forall i \neq j$
- tunable "knobs", θ_i , enable further adaptation

Behavior hierarchy: local navigation

Aug. 14-16. 2000

Simulated performance: threshold activation

Hotel med to be there images need to be these images need to printer this printed on a past script printer this printed on a past script printer this printed on this to show the shift which is shift which is the shift whic

Nominal performance without threshold activation (failure)

Performance with threshold activation: θ_{ah} =0.5, θ_{gt} =0.0025

Simulated performance: behavior interaction

Image converted later being converted for indusion

Concluding remarks

- Ethological concepts and models of behavior can be tailored for application to rover navigation
- Implementations of behavior hierarchies, multi-behavior modulation, and threshold activation can provide a facility for situated adaptation in rover control algorithms
- Adjustable thresholds provide tunable "knobs" that permit performance refinement in practice (simpler than rule or parameter tuning after deployment)
- The bio-inspired approach has potential as a conceptual model of intelligent behavior and behavioral relationships
- As ethologists study behavior from the outside, and roboticists concentrate on synthesis from the inside, perhaps we will converge at a unified understanding of intelligence